Probabilistic CCA with implicit distributions
본 포스팅은 Probabilistic CCA with implicit distributions에 대한 간단한 리뷰와 python 코드를 작성한 글입니다. 정확한 내용은 반드시 원문을 참조해 주시기 바랍니다.
추가적으로 아래의 python 코드는 mrquincle님의 AAE(Adversarial AutoEncoder) python 코드를 참고하여 만들었습니다. 해당 github: https://github.com/mrquincle/keras-adversarial-autoencoders/blob/master/Keras%20Adversarial%20Autoencoder%20MNIST.ipynb
0. setting
import tensorflow as tf
import tensorflow.keras as K
from tensorflow.keras import layers
print('TensorFlow version:', tf.__version__)
print('즉시 실행 모드:', tf.executing_eagerly())
print(tf.test.is_gpu_available(
cuda_only=False,
min_cuda_compute_capability=None
))
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
tf.debugging.set_log_device_placement(False)
TensorFlow version: 2.0.0
즉시 실행 모드: True
True
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 16133062203861420028
, name: "/device:XLA_CPU:0"
device_type: "XLA_CPU"
memory_limit: 17179869184
locality {
}
incarnation: 13116411031905517496
physical_device_desc: "device: XLA_CPU device"
, name: "/device:XLA_GPU:0"
device_type: "XLA_GPU"
memory_limit: 17179869184
locality {
}
incarnation: 11981642561625068716
physical_device_desc: "device: XLA_GPU device"
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 10747743437
locality {
bus_id: 1
links {
}
}
incarnation: 2742631385821467278
physical_device_desc: "device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0, compute capability: 6.1"
]
2020-05-05 22:27:08.949248: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.721
pciBusID: 0000:03:00.0
2020-05-05 22:27:08.949351: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2020-05-05 22:27:08.949389: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
2020-05-05 22:27:08.949427: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0
2020-05-05 22:27:08.949464: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0
2020-05-05 22:27:08.949497: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0
2020-05-05 22:27:08.949535: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0
2020-05-05 22:27:08.949573: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-05-05 22:27:08.950662: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2020-05-05 22:27:08.950743: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-05-05 22:27:08.950760: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2020-05-05 22:27:08.950771: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2020-05-05 22:27:08.951934: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/device:GPU:0 with 10249 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0, compute capability: 6.1)
2020-05-05 22:27:08.953243: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.721
pciBusID: 0000:03:00.0
2020-05-05 22:27:08.953285: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2020-05-05 22:27:08.953315: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
2020-05-05 22:27:08.953343: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0
2020-05-05 22:27:08.953370: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0
2020-05-05 22:27:08.953397: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0
2020-05-05 22:27:08.953425: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0
2020-05-05 22:27:08.953452: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-05-05 22:27:08.954524: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2020-05-05 22:27:08.954555: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-05-05 22:27:08.954568: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2020-05-05 22:27:08.954579: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2020-05-05 22:27:08.955729: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/device:GPU:0 with 10249 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0, compute capability: 6.1)
import numpy as np
import matplotlib.pylab as plt
import os
os.chdir('/home/jeon/Desktop/an/cca')
print('current directory:', os.getcwd())
current directory: /home/jeon/Desktop/an/cca
1. 데이터
tensorflow의 MNIST 데이터를 이용합니다.
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
print(train_images.shape)
img_shape = train_images.shape[1:]
x_shape = (img_shape[0], int(img_shape[1]/2))
y_shape = (img_shape[0], int(img_shape[1]/2))
xy_shape = img_shape
(60000, 28, 28)
(28, 14)
(28, 14)
각각의 이미지를 세로 방향으로 반으로 잘라 각각 x view, y view로 정의합니다.
2. 모형
잠재변수(latent variable)의 차원을 지정하는 부분입니다.
latent_dim = 100
1. encoder
encoder 모형을 생성하는 함수입니다.
def build_encoder():
x = layers.Input(shape=x_shape)
y = layers.Input(shape=y_shape)
xy = layers.Input(shape=xy_shape)
hx = layers.Flatten()(x)
hy = layers.Flatten()(y)
hxy = layers.Flatten()(xy)
hx = layers.Dense(256)(hx)
hx = layers.LeakyReLU(alpha=0.2)(hx)
hx = layers.Dense(256)(hx)
hx = layers.LeakyReLU(alpha=0.2)(hx)
hy = layers.Dense(256)(hy)
hy = layers.LeakyReLU(alpha=0.2)(hy)
hy = layers.Dense(256)(hy)
hy = layers.LeakyReLU(alpha=0.2)(hy)
hxy = layers.Dense(256)(hxy)
hxy = layers.LeakyReLU(alpha=0.2)(hxy)
hxy = layers.Dense(256)(hxy)
hxy = layers.LeakyReLU(alpha=0.2)(hxy)
zx = layers.Dense(latent_dim)(hx)
zy = layers.Dense(latent_dim)(hy)
zxy = layers.Dense(latent_dim)(hxy)
return K.models.Model([x, y, xy], [zx, zy, zxy])
우선 행렬 이미지를 Flatten
을 이용해 벡터로 변환한 후, Dense
layer와 LeakyReLU
를 이용해 functional API를 활용하여 encoder를 정의합니다. 이 때, 각각의 x, y, xy view에 대해서 별도의 layer를 지정하여 encoder를 생성합니다.
2. decoder
latent variable z가 주어졌을 때, 이를 이용해 원래의 이미지로 복원하는 decoder를 정의합니다. 이 때, 입력된 latent variable을 이용해 x, y 각각의 view를 생성하고, 이를 합하여 원래의 이미지로 복원합니다.
def build_decoder():
z_input = layers.Input(shape=latent_dim)
zx = layers.Dense(256)(z_input)
zx = layers.LeakyReLU(alpha=0.2)(zx)
zx = layers.Dense(256)(zx)
zx = layers.LeakyReLU(alpha=0.2)(zx)
zx = layers.Dense(np.prod(x_shape), activation='tanh')(zx)
img_x = tf.reshape(zx, [-1]+list(x_shape))
zy = layers.Dense(256)(z_input)
zy = layers.LeakyReLU(alpha=0.2)(zy)
zy = layers.Dense(256)(zy)
zy = layers.LeakyReLU(alpha=0.2)(zy)
zy = layers.Dense(np.prod(y_shape), activation='tanh')(zy)
img_y = tf.reshape(zy, [-1]+list(y_shape))
img = layers.Concatenate(axis=-1)([img_x, img_y])
return K.models.Model(z_input, img)
3. discriminator
encoder로부터 생성된 latent variable과 실제 prior 분포(Gaussian)에서 생성된 latent variable을 구별해내는 구별기를 정의합니다.
def build_discriminator():
z_input = layers.Input(shape=latent_dim)
z = layers.Dense(512)(z_input)
z = layers.LeakyReLU(alpha=0.2)(z)
z = layers.Dense(256)(z)
z = layers.LeakyReLU(alpha=0.2)(z)
v = layers.Dense(1, activation='sigmoid')(z)
return K.models.Model(z_input, v)
4. build
discriminator = build_discriminator()
discriminator.compile('adam', 'binary_crossentropy', ['accuracy'])
encoder = build_encoder()
decoder = build_decoder()
x_input = layers.Input(shape=x_shape)
y_input = layers.Input(shape=y_shape)
xy_input = layers.Input(shape=xy_shape)
encoded_x, encoded_y, encoded_xy = encoder([x_input, y_input, xy_input])
reconstructed_img_x = decoder(encoded_x)
reconstructed_img_y = decoder(encoded_y)
reconstructed_img_xy = decoder(encoded_xy)
# For the adversarial_autoencoder model we will only train the generator
# We only set trainable to false for the discriminator when it is part of the autoencoder...
discriminator.trainable = False
validity_x = discriminator(encoded_x)
validity_y = discriminator(encoded_y)
validity_xy = discriminator(encoded_xy)
acca = K.models.Model([x_input, y_input, xy_input],
[reconstructed_img_x, reconstructed_img_y, reconstructed_img_xy, validity_x, validity_y, validity_xy])
# almost no weights on discriminator...
acca.compile('adam', ['mse', 'mse', 'mse', 'binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'],
loss_weights=[0.3333, 0.3332, 0.3332, 0.0001, 0.0001, 0.0001])
acca.summary()
discriminator.summary()
Model: "model_5"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_8 (InputLayer) [(None, 28, 14)] 0
__________________________________________________________________________________________________
input_9 (InputLayer) [(None, 28, 14)] 0
__________________________________________________________________________________________________
input_10 (InputLayer) [(None, 28, 28)] 0
__________________________________________________________________________________________________
model_3 (Model) [(None, 100), (None, 676652 input_8[0][0]
input_9[0][0]
input_10[0][0]
__________________________________________________________________________________________________
model_4 (Model) (None, 28, 28) 384784 model_3[1][0]
model_3[1][1]
model_3[1][2]
__________________________________________________________________________________________________
model_2 (Model) (None, 1) 183297 model_3[1][0]
model_3[1][1]
model_3[1][2]
==================================================================================================
Total params: 1,244,733
Trainable params: 1,061,436
Non-trainable params: 183,297
__________________________________________________________________________________________________
Model: "model_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_3 (InputLayer) [(None, 100)] 0
_________________________________________________________________
dense_2 (Dense) (None, 512) 51712
_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 512) 0
_________________________________________________________________
dense_3 (Dense) (None, 256) 131328
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 256) 0
_________________________________________________________________
dense_4 (Dense) (None, 1) 257
=================================================================
Total params: 366,594
Trainable params: 183,297
Non-trainable params: 183,297
_________________________________________________________________
3. training
EPOCHS = 10000
BATCH_SIZE = 256
sample_interval = 100
# scaling -1 to 1
train = (train_images.astype(np.float32) - 127.5) / 127.5
train.shape
x_train = train[:, :, :14]
x_train.shape
y_train = train[:, :, 14:]
y_train.shape
valid = np.ones((BATCH_SIZE, 1))
fake = np.zeros((BATCH_SIZE, 1))
(60000, 28, 28)
(60000, 28, 14)
(60000, 28, 14)
Gaussian 분포로부터 생성된 latent variable을 이용해 이미지를 생성해내는 함수입니다.
def sample_prior(latent_dim, batch_size):
return np.random.normal(size=(batch_size, latent_dim))
def sample_images(latent_dim, decoder, epoch):
r,c = 5,5
z = sample_prior(latent_dim, r*c)
gen_imgs = decoder.predict(z)
gen_imgs = 0.5 * gen_imgs + 0.5 # rescaling
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[i*j, :, :], cmap='gray')
axs[i,j].axis('off')
cnt += 1
fig.savefig("./acca_img/acca_mnist_%d.png" % epoch)
plt.close()
'''training'''
for epoch in range(EPOCHS):
#=====train discriminator=====
idx = np.random.randint(0, train.shape[0], BATCH_SIZE) # sampling random batch images -> stochasticity
imgs_x = x_train[idx]
imgs_y = y_train[idx]
imgs_xy = train[idx]
latent_real = np.random.normal(size=(BATCH_SIZE, latent_dim)) # TRUE sample
latent_fake = encoder.predict([imgs_x, imgs_y, imgs_xy])
d_loss_real = discriminator.train_on_batch(latent_real, valid)
d_loss_fake = np.zeros(())
for i in range(3):
d_loss_fake = d_loss_fake + discriminator.train_on_batch(latent_fake[i], fake)
d_loss = np.add(d_loss_real, d_loss_fake) / 4
#=====train generator=====
g_loss = acca.train_on_batch([imgs_x, imgs_y, imgs_xy], [imgs_xy, imgs_xy, imgs_xy] + [valid for _ in range(3)])
if epoch % 500 == 0:
# print ("%d [D loss: %f, acc: %.2f%%] [G loss: %f, mse: %f]" % (epoch, d_loss[0], 100*np.mean(d_loss[4:]), g_loss[0], g_loss[1]))
print ("%d [D loss: %f, acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss[0]))
if epoch % sample_interval == 0:
sample_images(latent_dim, decoder, epoch)
0 [D loss: 0.938511, acc: 50.00%] [G loss: 0.972918]
위와같은 결과가 반복적으로 출력되게 된다.
4. inference
5개의 test sample에 대해 결과를 확인한다. 이 때, x view는 test 데이터로부터 가져와서 encoder를 이용해 latent variable을 생성하여 이를 이용해 이미지를 복원한다.
'''inference'''
j = 100
r = 5
given_x = test_images[j:j+r][:, :, :14]
print(given_x.shape)
latent_x, _, _ = encoder.predict([given_x, given_x, np.concatenate([given_x, given_x], axis=-1)])
print(latent_x.shape)
recon_img = decoder.predict(latent_x)
img_result = [given_x, recon_img, test_images[j:j+5]]
recon_img = 0.5 * recon_img + 0.5 # rescaling
fig, axs = plt.subplots(r, 3)
cnt = 0
for i in range(r):
axs[i,0].imshow(img_result[0][cnt, :, :], cmap='gray')
axs[i,1].imshow(img_result[1][cnt, :, :], cmap='gray')
axs[i,2].imshow(img_result[2][cnt, :, :], cmap='gray')
axs[i,0].axis('off')
axs[i,1].axis('off')
axs[i,2].axis('off')
cnt += 1
# fig.savefig("./acca_img/acca_result.png")
# plt.close()
(5, 28, 14)
(5, 100)
가장 왼쪽이 주어진 x view, 가운데가 x view만을 이용해 만든 전체 이미지, 가장 오른쪽이 맞추려는 대상이 되는 실제 이미지이다.
5. 의문점과 향후 수정 방향
- encoder, decoder, discriminator의 내부 layer architecture 개선
- 왜 복원된 이미지의 숫자는 두께가 훨씬 두껍게 나오는 것일까…?
논문
SHI, Yaxin, et al. Probabilistic CCA with Implicit Distributions. arXiv preprint arXiv:1907.02345, 2019.
코딩이나 내용에 대한 수정사항이나 더 좋은 의견은 언제든지 환영입니다! 감사합니다.
Comments